Estude Matemática


domingo, 25 de janeiro de 2015

História da Contagem




Você já usou muitas vezes os números, mas será que já parou para pensar sobre:
  1. O modo como surgiram os números?
  2. Como foram as primeiras formas de contagem?
  3. Como os números foram criados, ou, será que eles sempre existiram?

Para descobrir sobre a origem dos números, precisamos estudar um pouco da história humana e entender os motivos religiosos desses criadores. Na verdade, desconhecemos qualquer outro motivo que tenha gerado os números.
Os historiadores são auxiliados por diversas descobertas, como o estudo das ruínas de antigas civilizações, estudos de fósseis, o estudo da linguagem escrita e a avaliação do comportamento de diversos grupos étnicos desde o princípio dos tempos.
Olhando ao redor, observamos a grande presença dos números.

Quanto mais voltarmos na história, veremos que menor é a presença dos números.

O Início do processo de contagem
Os homens primitivos não tinham necessidade de contar, pois o que necessitavam para a sua sobrevivência era retirado da própria natureza. A necessidade de contar começou com o desenvolvimento das atividades humanas, quando o homem foi deixando de ser pescador e coletor de alimentos para fixar-se no solo.

O homem começou a plantar, produzir alimentos, construir casas, proteções, fortificações e domesticar animais, usando os mesmos para obter a lã e o leite, tornando-se criador de animais domésticos, o que trouxe profundas modificações na vida humana.
As primeiras formas de agricultura de que se tem notícia, foram criadas há cerca de dez mil anos na região que hoje é denominada Oriente Médio.
A agricultura passou então a exigir o conhecimento do tempo, das estações do ano e das fases da Lua e assim começaram a surgir as primeiras formas de calendário.
No pastoreio, o pastor usava várias formas para controlar o seu rebanho. Pela manhã, ele soltava os seus carneiros e analisava ao final da tarde, se algum tinha sido roubado, fugido, se perdido do rebanho ou se havia sido acrescentado um novo carneiro ao rebanho. Assim eles tinham a correspondência um a um, onde cada carneiro correspondia a uma pedrinha que era armazenada em um saco.

No caso das pedrinhas, cada animal que saía para o pasto de manhã correspondia a uma pedra que era guardada em um saco de couro. No final do dia, quando os animais voltavam do pasto, era feita a correspondência inversa, onde, para cada animal que retornava, era retirada uma pedra do saco. Se no final do dia sobrasse alguma pedra, é porque faltava algum dos animais e se algum fosse acrescentado ao rebanho, era só acrescentar mais uma pedra. A palavra que usamos hoje, cálculo, é derivada da palavra latina calculus, que significa pedrinha.
A correspondência unidade a unidade não era feita somente com pedras, mas eram usados também nós em cordas, marcas nas paredes, talhes em ossos, desenhos nas cavernas e outros tipos de marcação.
Os talhes nas barras de madeira, que eram usados para marcar quantidades, continuaram a ser usados até o século XVIII na Inglaterra. A palavra talhe significa corte. Hoje em dia, usamos ainda a correspondência unidade a unidade.

sexta-feira, 9 de janeiro de 2015

O que é a Matemática

A matemática (do grego μάθημα, transl. máthēma, "ciência"/"conhecimento"/"aprendizagem"; e μαθηματικός, transl. mathēmatikós, "apreciador do conhecimento") é a ciência do raciocínio lógico e abstrato. A matemática estuda quantidades, medidas, espaços, estruturas e variações. Um trabalho matemático consiste em procurar por padrões, formular conjecturas e, por meio de deduções rigorosas a partir de axiomas e definições, estabelecer novos resultados.
A matemática vem sendo construída ao longo de muitos anos. Resultados e teorias milenares se mantêm válidos e úteis e ainda assim a matemática continua a desenvolver-se permanentemente.
Registros arqueológicos mostram que a matemática sempre foi parte da atividade humana. Ela evoluiu a partir de contagens, medições, cálculos e do estudo sistemático de formas geométricas e movimentos de objetos físicos. Raciocínios mais abstratos que envolvem argumentação lógica surgiram com os matemáticos gregos aproximadamente em 300 a.C., notadamente com a obra "Os Elementos" de Euclides. A necessidade de maior rigor foi percebida e estabelecida por volta do século XIX.
A matemática se desenvolveu principalmente na Mesopotâmia, no Egito, na Grécia, na Índia, no Oriente Médio. A partir da Renascença o desenvolvimento da matemática intensificou-se na Europa, quando novas descobertas científicas levaram a um crescimento acelerado que dura até os dias de hoje.
Há muito tempo busca-se um consenso quanto à definição do que é a matemática. No entanto, nas últimas décadas do século XX tomou forma uma definição que tem ampla aceitação entre os matemáticos: matemática é a ciência das regularidades (padrões). Segundo esta definição, o trabalho do matemático consiste em examinar padrões abstratos, tanto reais como imaginários, visuais ou mentais. Ou seja, os matemáticos procuram regularidades nos números, no espaço, na ciência e na imaginação e formulam teorias com as quais tentam explicar as relações observadas. Uma outra definição seria que matemática é a investigação de estruturas abstratas definidas axiomaticamente, usando a lógica formal como estrutura comum. As estruturas específicas geralmente têm sua origem nas ciências naturais, mais comumente na física, mas os matemáticos também definem e investigam estruturas por razões puramente internas à matemática (matemática pura), por exemplo, ao perceberem que as estruturas fornecem uma generalização unificante de vários subcampos ou uma ferramenta útil em cálculos comuns.




segunda-feira, 15 de abril de 2013

Teorema de Pitágoras


O teorema de Pitágoras é uma relação matemática entre os três lados de qualquer triângulo retângulo. Na geometria euclidiana, o teorema afirma que:

A soma das áreas dos quadrados construídos sobre os catetos (a e b) equivale à área do quadrado construído sobre a hipotenusa (c).

O teorema de Pitágoras leva o nome do matemático grego Pitágoras (570 a.C. – 495 a.C.), que tradicionalmente é creditado pela sua descoberta e demonstração, embora seja freqüentemente argumentado que o conhecimento do teorema seja anterior a ele (há muitas evidências de que matemáticos babilônicos conheciam algoritmos para calcular os lados em casos específicos, mas não se sabe se conheciam um algoritmo tão geral quanto o teorema de Pitágoras).

O teorema de Pitágoras é um caso particular da lei dos cossenos, do matemático persa Ghiyath al-Kashi (1380 – 1429), que permite o cálculo do comprimento do terceiro lado de qualquer triângulo, dados os comprimentos de dois lados e a medida de algum dos três ângulos.



“Em qualquer triângulo retângulo, a área do quadrado cujo lado é a hipotenusa é igual à soma das áreas dos quadrados cujos lados são os catetos.”




Vídeos 

 

 

Exercícios - Teorema de Pitágoras

1. Um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. O comprimento dessa escada é de?




2. Calcule o valor do segmento desconhecido no triângulo retângulo a seguir.
   




3. Calcule o valor do cateto no triângulo retângulo abaixo:


 



4. Um ciclista acrobático vai atravessar de um prédio a outro com uma bicicleta especial, percorrendo a distância sobre um cabo de aço, como demonstra o esquema a seguir:
 
Qual é a medida mínima do comprimento do cabo de aço?